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The method of averaging which arises in certain problems of celestial 

mechanics was first applied by Van der Pol [1,2] in problems of the theory 

of nonlinear vibrations. The method was further developed by Faton [ 3 1, 

Mandel’shtam and Papaleksi [ 4 1, Bulgakov [ 5,6 1, and Bogoliubov [ 7 1. 

In the present paper we consider a quasilinear vibrating system, which 

contains one nonlinear dependence on one of unknown coordinates. The 

properties of averaged equations of motion are investigated (“shortened”, 

in the first approximation). This work is based on one version of the 

averaging methods devised by Bulgakov. It is shown that with few assump- 

tions the averaged equations can be reduced to a special form, which 

allows the establishment of certain properties, and is also useful for a 

number of specific problems. 

1. Let us consider a certain vibrating process of a system with n 

degrees of freedom defined by the equations 

where yk are unknown coordinates and fjk(D) is a polynomial with constant 

coefficients. Only one of the functions $i, say y?w(yl, t) depending on one 

coordinate y-1 and time, can be different from zero. Let f(D) 11 f. (D) ]I 

be a matrix of the system (1.1). F(D) 11 Fjk(D) 11 is the adjoint ittrix, 

such that Fkj (D) is the algebraic complement of the elements of fjk(D). 

By h (D) = det f(D) we denote the determinant of the system (1.11, which 

has 8 real roots ‘co@ = 1, . . . , 6) and conjugate complex roots Eh ;t i0h 

(h = 1, ..*, 1. 

We introduce the following assumptions: 
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Equations of the first approximation in the rethod of averaging 1011 

(a) Determinant A (D) has only simple roots; 

of the coefficients of the highest derivatives in (1.1) (b) Determinant 

differs from zero; 

(c) Every coordinate or its derivatives are contained in (1.1). 

Using the assumptions above we can transform the system (1.1) to 
normal coordinates, as done by Bulgakov [ 6 1 in the general case. 

The formula of transformation has the form: 

(1.2) 

NJ,, (“)a,, ens (uh + ..‘jrc + $1,) (i = 1 , ..., “, V= 0, I,..., mj-1) 

4 

Here nj is the order of highest derivative of coordinate yj in (1. l), 

0’ ‘h’ ‘h are new unknowns (normal coordinates) which satisfy equations 

d’l, 
- = x,s, + 11’ 

dt -+) 6,,, (2/p 1) 

dnh - -- = El,“,, + 2 Hc 
dt [ b’ (91 ,,:, Jr‘ 8, -+h,m~ on, (2/f 11) I 
% 2 P -itr,, 

-it 
= cd,, + -.-- Tm 

A’(s,, + io!,) 
TI’ 

Oh 

(i .3) 

(0 =- 1,. . ., 0, 11: 1,. . ., 1’) 

In these equations yI 

quantities entering into 
is replaced with the aid of equation (1.2). The 

equations (1.2) and (1.3) are defined as 

so that 

Here so, sh are arbitrary coefficients, 
Fk(c.7). I(o)%)’ Fk(h), l(h) 

(ch + iah) are elements of the matrix F(D) which are not zero for given 

o and h. 
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Equations (1.3) are exact. To obtain simpler approximate equations. 

we will add new conditions to those previously stated in (a), (b), and 

(c). 

We assume that: 

(d) The frequency tih is such that the relation gio+ + g26+ + . . . + 

go = 0 is not fulfill:d for any integral values of gh, which are not 
all simultaneously zero. 

(e) The quantities ic&o, 6 hah are small compared with co+,ah. 

(f) The function t/ll(y[. t) is small (quasilinear system). 

(g) For variations of t, if it enters explicitly, ‘/‘I, varies slowly 
compared to variation of argument ah. 

With these conditions, equation (1.3) has a ‘standard” form and permits 

of averaging with respect to all variables. After averaging we obtain 

+,, (~1, t) dul. . . du, 

x It 

dUh 
--~ == y,,+ 

2 
dt 3 

ne 
A 

+,,,,?‘f~du,. . .duo I 

dub 
- = a,, + 

dt 
+,,,e+du,. . .du, 

I 

(1.5) 

((I- 1,. .,o, h= I,..., 3) 

In averaging, co, ah, t are considered as constants. 

The equations of the first two groups do not contain ah. From the 
third gl-OUP t‘,, can be obtained by quadratures. 

2. Assume that any of the quantities vlo(a = 1, . . . , 8), Nlh(h = 1, 
. . . , ) in (1.2) are not zero. Obviously. this restriction is not 

essential, because if it is not satisfied, the first two equations from 

the above group can be integrated and the problem becomes trivial. We 
introduce new unknowns according to the formula 

xg = P I, L ‘/L = Nl/, ‘h (2.1) 

Then the expression (1.2) for yI takes the form 
0 0 

Yl = (2.2) 
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Equations (1.5) and (1.4) lead to 

x x 

d% --. 
dt 

= xozg + 6, (yl,t) dw . . .du, 

(2.3) 

(a= 1,. . .,e, h=l,...,8) 

where 

rc t 

A 

h 
= Flm(rh+iob) e-iYlh 

*‘(=h + iw,,) s s . . . c -iul~ Q,(_yl, t)dul . . . du8 (2.4) 
--n --x 

It is easy to show that 

x % 

s s 
. . . sin(uh+Y,h) ~,(Y~,t)dul,...,du,=O 

--n -7T 

Consequently, 

A = F,,,, b,, + i0,,) ’ I-C 
h I s . . . 

*’ (‘,, + i”‘,) _-x 
COS (u,, + Yl,, ) +,,, (Yl, t) dul . * * du, (2.5) 

_-x 

Substitutini equation (2.5) into equation (2.3) we obtain 

dx 

d = xazo + dt 

* x 

JI, (~1, t) dul . - . due 

drh 2 
dr = ‘h’h + i+- l.%s @/, + -flh ) +, (Yl. ‘) d”l ’ - ’ d”8 

dub 2 
- -Oh +- 
dt ‘h (2X)8 

--x --Ic 

(2.6) 
x x 

s s . . . ~0s b,, + Yl,, ) ‘i’, (Yl. 1) dut - . . du, 
-.T --n 

(~=1,...,0, h=l,...,8) 

Let us consider the function 

(2.7) 

which is obtained by the original averaging for the function $s(y,, t). 

We will nor find the partial derivatives of this function with respect 

to its argument zo(a = 1. . . . , 8). zh(h = 1, . . . I ). If in a certain 
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domain, the variables x0, zh, u,, satisfy the following conditions, the 

function 
VI 

. T,,, (~1, t) = 
s 

+, (Y, 0 dy 

0 

integrated with respect uh for any x0, I,,, has bounded partial deriva- 

tives J$,/c~x,, aqa,,, also integrable with respect to u,,, then the 

derivatives of the function @ can be found according to the rule of 

differentiation of an integral. 

Evidently, the indicated condition is fulfilled for a sufficiently 

large class of functions $m(yl, t), in particular for stepwise-continuous 

functions often met with in practice. 

Hence, equation (2.6) can be written in the form 

dx.3 F,,(X,) cm 
- = x0x0 + ___ 7 
dt A’ (x,) Ox0 

dzh _ __ . - chzh + 2Rc 
dt 

‘:;;I I;$) ] e 

_ ~. = ah + ~2.. Im du, F,, (Q + 4,) am 
dt 5, A’ (E,, + iti,,) l- % 

(2.8) 

(c=l,..., 6,h=l,,.., 8) 

where the function @ = @ (x,, . . . , x0, zl, . .., 20, t) is given by equa- 

tion (2.7). For the solution of a number of problems this equation is 

more convenient than the previous one. However, further transformation 

of equation (2.8) succeeds in giving another form, which appears useful 

for the solution of specific problems, but mainly for the investigation 

of the general properties of the averaged equations. 

Assume that both the quantities 

F,, lz,) 
r_ = r. :_,* = 211e F,, Cc,, + iti,,) 

A’(xn) ’ 4 -_~_ A’ (‘,, + im,L) 1 (a=1 ,..., R,h=1,... a) 

are not zero. Lf this does not hold, then the problem of investigation 

of equation (2.8) is trivial, because in that case a part of the equation 

is integrable, and by substituting the result of integration in the re- 

maining parts, we obtain another form of equation (2.8) with fewer un- 

knowns. Let us introduce the function 
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[ 

0 
1 

Y (Xl, . .(X0’ Zl, . . .) z*J) =y 2 
0-l 

where 

p, = -7% , 
r. 

Then, the first two groups of equations (2.8) have the form 

dxo __ aY d’h _ 
dt a (1x 

, 
dt - ‘o-t11 

0 

In symmetric notation 

xi = x0, ri = r. 

xi = ‘jr* ‘i = ‘O+h 

equations (2.10) are transformed 

P,XlJ2 + QaZh2 ] +m (x1, . . . . xo,zl )... Z&J) (2.9) 

h-l 

q,, = d!!_ 
'tl+h 

+4 . . . . . e,h=l,..., a) (2.10) 

aZh 

(a=1 )..., 0, i=l,..., e) 

@=I,... a, i = 8 + I,.. .,e + a) 

into a compact form 

dti 

-at. 
=ri _!?C 

dXi 
(i = 1, . ., e + a) 

which we can, after substitution 

zi = Xi’ 1/Ej 

reduce in the same way to the form: 

dxi’ 
_ = sign r. .Z,!? 

dt 1 aXi' 
(i = 1, . . . 8 + a) 

(2.11) 

(2.12) 

where 
I 

9.’ (Xl’, . . .) IO +a, t)=Yh ~+iT. ..,~~+~1/lr~+~(,t) 

3. The form of equation (2.12), which is the result of averaging equa- 

tions (1.5), permits the establishment of certain properties of the solu- 

tions of these equations. The character of the curves of the system (2.12) 
essentially depends upon the sign of the quantity ri. The problem of the 

dependence of the properties of the initial system (1.1) on the signs of 

these equations can be partially solved by using the following assumptions. 

For the signs of ri to be identical, it is necessary for the integral 
part of the fraction DFln(D)/ b (D) to differ from zero, or for the 

fraction itself not to vanish at D = 0. 

In the sequel we will consider mainly systems with identical signs of 

r. 1, which do not depend explicitly on the time-function y’; In this case 
equation (2.12) has a form 
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for ri > 0. The form for ri < 0 is obtained by changing the sign either 

of the function \Y or the time t (here the dash sign is omitted, in 

order not to complicate the notation). The function v in equation (3.1) 

represents the velocity potential: 

The system being considered has been proved correct by a theorem of 

Barbashin (8 1. If a dynamical system possesses a single-valued velocity 

potential, then every point of the space M for which it is prescribed is 

either in motion or at rest. 

Hence follows the particularly important deduction: among the integral 

curves of the system (3.1) closed cycles do not exist. 

Consider the behavior of the integral curves of the system (3.1) in 

the neighborhood of a singular point. Let the function y be such that in 

the neighborhood of the origin it can be expanded in a Maclaurin series 

Or8 

YfXl,..., %+a 1 = y (09 * * * 0) + 2; yi (0, . . ., 0) xi + 

i=l 

Because the point [ 0, . . . , 0 ] is a singular point, ul’% ,(O, . . . , 0) = 0, 
then the motion close to this point is defined by equationa 

(3.21 

ge assume, as usual, that the determinant of the right-hand side of 

equation (3.2) differs from zero. Obviously, the roots of the character- 

istic determinant of the system (3.2) are represented by means of the 

symmetric matrix 11 ‘v’:.. (0, . . . . 0) 11, and consequently are all real. 

The general solution of equation (3.2) has the form 

where Ck are arbitrary constants, Aik are constant or polynomials in t 

and all h, are real. Hence it follows that in the case of two variables 

the singular point is either a nodal or saddle point but not a focus. 

It is possible to give a geometrical interpretation for equation (3.1). 

In fact, it follows that the vector dn with coordinates dxl, . . . , dxe+ 
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is collinear to the vector grad Y, but the vector grad Y on the surface 
Y = C is orthogonal to the function Y. Thus, the trajectories of the 
system (3.1) are orthogonal to the surface Y= C. In addition, note that 
singular points of the. system (3.1) defined by the system of the equations 
dY/dx. = 0 ( i = 1, 0 + 1 represent stationary points on the sur- 
face Yf These circumsLin;es permit the study of trajectories of the 
system (3.1) to be reduced to the study of the property of the surface Y. 

Now we look for a completely arbitrary function Y. By virtue of equation 
(3.111 it follows that 

Therefore, for the motion along the trajectories, the functions t/f can 
only increase and its derivative is zero only at singular points. The 
extrema of Y are nodal and saddle points - saddle points of system (3.1). 

The properties exhibited by the system (3.11 make it possible to pro- 
pose an approximate method for the construction of the integral curves 
contained in the construction of the family Y= C for different c, and 
also to constructorthogonaltrajectories to that family. It is evident 
that such a method cannot yield significant accuracy; however, it Permits 

us to obtain a satisfactory qualitative picture of the location of the 
trajectories in the phase space. 

Note one more possibly useful graphio analogy. In case of two vari- 
ables, considering the surface Y (x,, z2) in three-dimensional space, it 
is easy to establish that equation (3.1) determines the projections on 
the horizontal plane Lx,, x2 1 of the material points moving over the 
surface Y (x,, x,) under the influence of gravitational and frictional 
forces. 

4. To give an example of the application of the theory, we consider a 
gyroscopic pendulum, close to the position of equilibrium, under the 
influence of a small moment caused by the force of dry friction along one 
of the axes. 

The equations of motion in this case have the form [ 9 1 : 

Denoting 

the equations above can be written in the form 
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si + x,1 + p:‘a = 12 sign R, 5 - ?.R + 02p = 0, a---R=0 

The determinant of the system (4.1) has two pairs of imaginary 

D 192 = f iwr, Os4=&-iioY 

U1,2 t= $ (p2 + 0.2 + q’ F I’), f’ = 1/ ($ + oP + @)” _ 4p~o~ 

(4.1) 

roots: 

Transformation of equation (2.2) for n and equation (2.3) in new un- 

knowns have the form 

R = il cos (u1 + y,) + 22 cos (U$ + yy) 

(4.2) 

where 

sillg Rdfl du,dua = 1 4/l 
,c 21 p?(k) -(a -k”) K (I,)] (4.3) 

--x--x ” 

k = -” , 
31 

z1 2 22; 0 ( (I) (Zl, Z?) = u’, (22,z1)= cn (21,-z*) = CI, (- .zl, z&z (1) (- q--z.‘) 

E(k), K(k) are complete elliptic integrals. From the last two equations 

(4.2) it follows that the vibration is isochronic. 

Consider the first two equations for the amplitudes. It is easy to 

show that 

Consequently, we have a system for which the velocity potential can be 

obtained and the deductions of Section 3 are valid. The functfon @ in 

this case is a ruled surface close to the right-hand cone. 

For construction of the integral curves the proposed method can be 

applied. For large H, it is easy to show that 1 ml2 - u2 1 << 1 CT* - ol* 1; 
thus, all trajectories are tangent to the zl-axis, and the frequency of 

vibration 02 (nutation) is damped faster than the frequency o1 (precession) 

It follows from (4.3) that a@/o’z,, d@/az, are always finite and the 

vibrations are damped in a finite time. If in equation (4.2) and (4.3) 

we introduce polar coordinates, then the equations for amplitudes can be 

evaluated by quadratures. In contrast to [ 9 1 the solution is obtained 

in all the phase plane. 
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